Hi,
Gianni from Belgium has a nice retropcproject. He use the EVGA Classified SR2 and use Liquid Extasywaterblocks and placed 4pieces of EVGA GTX 580 FTW. If u need help with ur project, then write me an e-mail.
The loop is very restrictive. I use 3 pieces of Laing D5 @ level 4.
It is not the video hehe. I guess i have around 70l/h. Something like this.
Its not much, but enough for my Ibag HF80A.
Regardless of your restrictions, the flow meter should have a steady flow rate (spin at the same speed). As you can tell from the video, it looks to....'pulse' or slow and speed up and isn't consistent.
Not sure if that's a problem in the flow rate meter (I do recall mentioning something about that design when you brought it up...) or the loop flow itself.
Really. At least, that's what testing with watercooling showed back in the day (see our sticky threads, for example). Maybe things have changed today? No clue. But 70L /hr in a normal loop seems incredibly slow. That ~1L through your loop every ~50s...
hehe
Hi,
For the next productionround i prepared 3 different kind or Ramwaterblocks. It fits to Bykski Heatspreader and i prepared waterblocks for Asus B550I Aorus Pro AX, Sapphire Pulse 7800XT, EVGA RTX 3070 TI CX3, MSI RTX 4090 Gaming Slim, Palit RTX 4070 Jetstream. It a lot of work in CAM. For me it feels like i wasting time L I really dont like coding.
Attached some pix of the last productionround. Except 2 waterblocks everything is finish. (XFX RX7800XT Speedster MERC319 and Playstation 5) But have a short look to the GeForce_RTX 4070 Ti EX Gamer waterblock.
EVGA X299 Dark
Gainward RTX 4090 Phantom GS
Gigabyte RTX 2070 Super
Playstation 3
Playstation 3 Mosfet
Powercolor Red Devil RX_6700xt12GB GDDR6
And I tested the No. UNO and the No. UNO 75 in Acrylglasversion and compare it with the Core 1 at an AMD AM5 setup. For me, the results was not surprising. Additional of this test r different mountingpreasure. We see that the core 1 works just with a lot of preasure. Mounted at 0,15Nm the core 1 **** up. The performance getting better and better as more as torque u will use.
We can just guess… … We know from the Velocity 2 that customers should mount it with a torque of 0,6Nm and some customers was surprised that the board doesn’t post anymore. So they use 0,5Nm. Its not really a surprise coz 0,6Nm r too much. This telling us the Intel and AMD specs with around 1000N. I have a torque screwdriver and I had build an aparature to measure the Kilos/Newton by Nm. 0,12Nm = 53kilos = 530Newton. So I guess if u use more than 0,4Nm u will **** off the Intel and AMD specs coz it blows the line of ~1000N.
Have a look at the results. By the way, the No. UNO is not that pricy than the Core 1 and the flow is much more better. Iam happy with the performance of the No. UNO’s. Especially the revision 3. I guess the release of the Revision will be in April 2024. May be the waterblock will get a new design. I like the Design of the Velocity 2. Pure elegance…
Hi, sorry guys for a german post. But its too long to translate. Summary: good news and some pix of the flowsimulations.
Hi,
inzwischen habe ich mir wieder eine Workstation für Strömungssimulationen aufgebaut und bin froh dass nach 10 Jahren Abstinenz soweit wieder alles funktioniert hat. Grobe Schnitzer lassen sich aus der Simulation nicht entnehmen was für mich zu erwarten war da ich hunderte Simulationen von 2008-2013 gefahren und ausgewertet habe und aus einen Pool von 31 kommerziellen Kühlern schöpfen kann die es zu kaufen gibt oder mal zu kaufen gab die ich damals alle Praxistests und Strömungssimulationen unterzogen habe. Auf Basis dieser Erfahrung wurde der Liquid Extasy No. UNO entwickelt. Und nun jetzt auch auf Strömungen simuliert.
Auffällig, aber anders nicht lösbar ist die geringe Strömungsgeschwindigkeit in den Fins die aus den enorm großen Querschnitt und der großen Schlitztiefe resultieren. Wir liegen hier bei grob 0.2 – 0.8m/s. Hier bringt mehr Oberfläche in Form von tiefere und mehr Fins mehr, als höhere Strömungsgeschwindigkeiten um die Grenzschichten aufzulösen. Würden wir die Schnitttiefe von 2,6mm reduzieren, die übrigens ähnlich des Core 1 ist, würden wir hier wesentlich höhere Strömungsgeschwindigkeiten haben können. Da sprechen wir dann über rund 2-3m/s. Dafür würde der Kühler dabei restriktiver wirken = weniger Durchfluss und an Kühlleistung verlieren. Würden wir beispielsweise einen Heatkiller 4 pro heranziehen mit 3mm Schlitztiefe dann lägen wir dort auch nur bei moderaten 0.5-1.25m/s. Viel ist das wirklich nicht. Aber Oberfläche ist Trumpf. Gesetz den Fall die bereitgestellten Simulationsdaten des Users Hithunter stimmen. Wovon ich ausgehe.
Zu sehen ist ferner das die ersten 3-4 Fins nicht optimal angeströmt werden da die im Schatten liegen. Das ist aber nicht Kriegsentscheidend und nur ein kosmetischer Makel. Wir haben einen homogenen Austritt des Wassers aus den Fins und der Primärstrom läuft über die mittlere breitere Düse so wie es sein soll. Was man mal probieren könnte wäre die beiden mittigen Auslassdüsen mal weiter nach Außen zu verschieben damit das Wasser etwas Effizienter zentrisch auf die Bodenplatte trifft was das eine oder andere Zehntel K ausmachen könnte. Die Seitenansicht zeigt auch deutlich das die ersten 60% des Finfeldes gut angeströmt wird und durch die Auslassdüsen das Wasser im letzten drittel bevorzugt nach außen gesaugt wird was in Summe eine ordentliche Verteilung des Wasserstroms zeigt. Viel mehr kann man sich eigentlich nicht wünschen. Es wird zu den Bildern noch ein Video geben das mein Kumpel heute Abend fertig machen will. Er soll da bisschen Musik drauf packen nen Intro und Outro einfügen und dann releasen.
Ich möchte darauf hinweisen dass es sich bei der Simulation nicht um 1:1 übertragbare Daten handelt. Ich nutze die Sötrmungssimulation nur um nachvollziehen zu können wo das Wasser wie langfließt um Optimierungspotential darstellen zu können wo es hier nicht viele aus nahe liegenden Gründen gibt. Wenn wir die Software nutzen müssen wir ihm erstmal sagen dass wir intern berechnen lassen wollen und dass, wenn wir es denn wollen auch die Temperatur mit berechnen lassen wollen. Wir müssen das Medium Wasser auswählen sowie Kupfer der Bodenplatte sowie die DIE ebenso Kupfer. Als Düsenplatte und Deckel habe ich einen Isolator definiert da er ja nicht primär die Temperatur berechnen soll sondern um die Strömung des Wassers. Interessant wird es nur bei der Bodenplatte um sehen zu können ob oben am Fin überhaupt noch Wärme ankommt.
Wobei das allerdings auch wieder so ein eExtrathema wäre was uns praktisch nicht weiter bringt. Somit beließ ich es bei den alten Q6600 DIEsim dem ich 200W draufgeben ließ. Die 200W kommen oben am IHS sowieso nur bei absoluten Highened CPU’s an da wir ja wissen das das größte Problem heutzutage ist wie man die Wärme aus dem DIE in den Heatspreader bekommt. Viel Mühe gibt sich AMD und Intel da nicht. Von den 200W die man reinschiebt kommt da oben am IHS nicht mehr so dramatisch viel an. Wenn wir das genau definieren wollen, können wir das mittels der Aufheizzeit berechnen. Aber wie gesagt, für mich völlig unwichtig und daher habe ich dies auch nicht praktiziert.
Bevor wir die Rahmenbedingungen festlegen müssen wir dem noch sagen dass wir laminare und turbulente Strömung berechnen lassen wollen. Jetzt gilt es die Rahmenbedingungen und die Ziele der Simulation festzulegen nachdem wir als letzen Schritt die Rauheit und das Mesh sowie Simulationsgenauigkeit festgelegt haben. Als Rahmenbedingungen habe ich mir die Pumpenkurve der Laing DDC12 herausgeholt und in das Programm implementiert und dem einen Gegendruck von 180mbar entgegen gelegt. Das entspricht in etwa einen CPU Wasserkühler + GPU Wasserkühler und mittelgroßen Radi.
Auf meinen Teststand mit den Uno liege ich bei rund 100mbar ohne jegliche weitere Kühler mit einer Aquastream Ultra. Das kommt in etwa hin. In den Rahmenbedingungen sagen wir dem wo der Ein und Auslass ist, wo der DIESim sitzt und wie viel Watts der reindrücken soll. Wir definieren die Ziele als Durchfluss in Kg/h was zwar die falsche Einheit ist aber nicht stört da 1Kg Wasser = 1L sind. Ferner definieren wir dT min, dT max, und dT average wo wir in Summe noch einen Massenstrom hinzufügen müssen. Dann kanns im Grunde schon losgehen. Während der Simulation kann mein weitere Optionen einfügen wie beispielweise die Netzverfeinerung die wir dringend brauchen sodass der in kritischen Bereichen mehr Zellen reinpackt um keinen Murks zu produzieren. Weiterhin können wir auch noch die Maximalanzahl von Zellen definieren. Vor 10 Jahren habe ich noch mit 1Millionen Zellen gearbeitet. Heutzutage mit mehr Performance arbeite ich mit bis zu 8Millionen Zellen. Entsprechend fein ist das mesh und entsprechend genau lassen sich die Strömungen auch darstellen. Nach rund 10h ist die Simulation dann fertig.
Im Grunde ist das Thema eine Wissenschaft für sich aber mit Geduld und einen Mentor oder Tutorial für diesen kleinen Rahmen leicht zu erlernen. Es gibt da so einen User Hitman im Hardwareluxx der das professionell macht, sich meines Erachtens jedoch zu stark auf den Simies verlässt. Das was simuliert wird, trifft trotz Validierung nicht immer in der Praxis ein. Wer sich zu 100% auf die Simie verlässt, ist verlassen. Ohne Praxistests läuft nichts. Hinzu kommt noch das man sich bei den Simies Tagelang an kleinste Details aufhalten kann ohne praktischen Nutzen. Was bringt mir eine Simulationssession von einer Woche wenn die Strömungsdarstellung perfekt aussieht und dies in der Praxis nur 0,1 oder 0,2K ausmachen.
Wer nichts besseres zu tun hat und diese Simulationen auch in der Praxis umsetzen kann, der kann das gerne tun. Besagter User fehlt jedoch Zugang zur Cnc -> ergo eher nur Spielerei und nice to have. Seiner Meinung nach ist der Heatkiller 4 mit 3.5mm (können auch +-0.5mm gewesen sein) tiefen schlitzen der perfekte Kühler. Das ist er meiner Meinung nach nicht was auch die Kühlercharts zeigen. Am Kühler gibt es wesentlich mehr als ein paar Schlitze im Boden und eine Düse mittig wie ich schmerzlich mit der Halterung beim UNO Acryl feststellen musste oder wie man an meinen AM5 Test Liquid Extasy No. UNO VS Core 1 sieht. Um nur mal zwei Beispiele zu nennen. Der Strömungsverlauf des No. UNO’s ist spitze, in der Acrylversion aber anfällig gegen mechanische Kräfte wobei die Performance noch immer auf dem Niveau des Core 1 liegt und selbst dann wenn der Core 1 0,5Nm Anzugsmoment nutzt die man wahrscheinlich gar nicht nutzen dürfte ( AMD-Specs). Bei gleicher Anpresskraft von 0,15Nm ist der Core 1 sodann deutlich hinten. Um fair zu sein, der hat aber auch nicht genug Fläche. Wird der Apex dann sicherlich haben.
Abschließen sei erwähnt das ich inzwischen noch stärkere Druckfedern finden konnte. -> 145N. Damit sind wir Druckfedertechnisch ziemlich weit vorne und können ca. 0,18Nm erreichen. Das passt schon da wir mit den No. Uno Acryls so 0,15Nm haben wollen und mit den aktuellen Federn nur ~0,9Nm erreichen. Das bringt praktisch nochmal das eine oder andere Zehntel K. Unterdessen gibt es auch Fortschritte bei den Werkzeugen. Sollte sich das Design bei der Revision 3 nicht grundlegend ändern, werden wir 12mm dicke Frames einsetzen. Damit wird die Acrylglasversion steifer und kann die mechanischen Kräfte besser aufnehmen. Optimum wird dann wohl um ca. 0.05-0.1Nm erhöht was hochgerechnet noch mal ca. 0,4K – 0,7K ausmachen könnten. Die Vollmetallversion bleibt weiterhin auf einen 8mm Frame begrenzt. Die 2 Kleinigkeiten die die Strömungssimulation sichtbar gemacht haben werden bei der Revision 3 dann auch noch behoben wobei diese dann nicht kriegsentscheid sein werden. Wohl max. 0,2-0,3K.
Ich freue mich endlich mal wieder eine Auswertung gemacht zu haben und freue mich auch das diese so positiv ausgefallen ist wie sie ausgefallen ist. Wenn die Nummer gut läuft gibt es morgen/Übermorgen noch ein interessantes Video J
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.