G.Skill TridentX 8GB DDR3-2933 Memory Kit Review

Today we’re going to have a look at an insanely-spec’ed memory kit, G.Skill’s high frequency, 2×4 GB DDR3-2933 TridentX kit. It is designed for one thing – hitting extremely high frequencies on the Intel Haswell platform. Of course, people looking to buy such a kit want to know how it performs too, so we’ll look at that for you as well.

Specifications & Product Tour

This kit is rated for DDR3-2933 with loose(r) timings of 12-14-14-35-2N. However, it’s one of those crazy kits that can do that kind of frequency at only 1.65 V, which is impressive in itself. The specifications were pulled from G.Skill’s product page.

SeriesTridentX
Memory TypeDDR3
Capacity8 GB (4 GB x 2)
Multi-Channel KitDual Channel Kit
Tested Speed2933 MHz
Tested Latency12-14-14-35-2N
Tested Voltage1.65 V
Registered/UnbufferedUnbuffered
Error CheckingNon-ECC
SPD Speed1333 MHz
SPD Voltage1.50 V
Fan IncludedYes
Heat Spreader
FeaturesIntel XMP (Extreme Memory Profile) Ready
Height54 mm / 2.13 inch
WarrantyLifetime

Like all high-performance G.Skill memory that comes with a fan, the packaging is a rather nondescript cardboard box with a sticker for the memory specs and one denoting for which chipset the kit was designed. While they always put that sticker on there, remember that they will work just as well on any platform, but other platforms may not be able to run them to spec – especially ones rated for this kind of frequency.

TridentX DDR3-2933 Box
TridentX DDR3-2933 Box

Box Opened
Box Opened
Specs & Model Number
Specs & Model Number

The included fan is your standard G.Skill fare, with two 50 mm fans mounted into a metal cage. I wish they’d ditch the MOLEX connector and go for a 3-pin fan header so you could plug it right into the motherboard. That would help with wire management.

G.Skill Fan
G.Skill Fan

Fan Specs
Fan Specs
Another Fan Angle
Another Fan Angle

Here are the sticks themselves, which are the tried and true TridentX heatspreader design. That top fin does come off if you have an air cooler that extends a bit too far over your memory slots.

G.Skill TridentX DDR3-2933 Kit
G.Skill TridentX DDR3-2933 Kit

G.Skill TridentX DDR3-2933 Kit
G.Skill TridentX DDR3-2933 Kit

G.Skill TridentX DDR3-2933 Kit
G.Skill TridentX DDR3-2933 Kit

These are different than past kits in that they’re single-sided 4 GB modules. While I’ve agreed not to pull the heatspreaders off of G.Skill RAM and photograph the ICs, if you know anything about high frequency, single-sided RAM from any manufacturer, you’ll know right off the bat these are Hynix MFR ICs.

Single-Sided Sticks
Single-Sided Sticks

What’s that? You want a few more photos? Ok!

This slideshow requires JavaScript.

G.Skill TridentX DDR3-2933 Kit
G.Skill TridentX DDR3-2933 Kit

Good looks and very high frequency; so far so good!

Test System

Our test system is a Haswell-based machine using an i7 4770K and a very strong memory clocking board, the ASUS Maximus VI Extreme.

CPUi7 4770K
MBASUS Maximus VI Extreme
RAMG.Skill TridentX DDR3-2600 10-12-12-31
G.Skill TridentX DDR3-2933 12-14-14-35
OSWindows 7 Professional x64

The ROG red and black sure pairs well with TridentX sticks.

G.Skill TridentX DDR3-2933 Running
G.Skill TridentX DDR3-2933 Running

Stability at Rated Speed

The first thing we need to do is make sure these sticks work as advertised. I put the CPU at stock, set the XMP profile, set VCCSA (System Agent Voltage) at 1.25 V and booted into our tester kindly provided by UltraX, the UltraX R.S.T. Pro. In this case, our PCIe tester was down so I used the conveniently supplied USB tester. Both of them perform the same intense testing. As you can see, five passes passed over four hours of hammering on the RAM. The sticks were nice and toasty when finished, even with a fan blowing over them.

DDR3-2933 R.S.T. Pro Stable
DDR3-2933 R.S.T. Pro Stable

Of course, we’d be remiss if we didn’t test in-OS too. The kit passed HyperPi 32M testing without complaint.

DDR3-2933 HyperPi Stable
DDR3-2933 HyperPi Stable

With stability out of the way, let’s see how this kit performs.

Performance

First, the methodology. All benchmarks here on both of the kits tested were run three times with the results averaged. There is a third set of results that were run once. This kit was underclocked and the primary timings were tightened to see how much of a difference it would make. They did so admirably, running at DDR3-2800 with timings of 11-13-12-28. The rest of the timings remained at XMP. All results are graphed relative to this kit’s performance. The DDR3-2933 TridentX kit is always 100% and the other tested configurations go over or under that, depending on whether they perform better or worse, respectively.

Now we’re where the rubber meets the road and when I got this kit, the extremely high frequency actually worried me, as it should be worrying those of you that care about more than RAM frequency. Timings are almost always sacrificed when raising frequency. Often the main four timings aren’t the only thing sacrificed; secondary and tertiary timings invisible to the end-user (when running XMP) also play a role. Indeed that was the case here.

When graphing the results I noticed that in many cases, this kit was out-performed by the much less expensive DDR3-2600 TridentX kit. So I wanted to see if lowering the speed and cranking down the timings would help. Thus, I lowered the speed to DDR3-2800 and was able to lower the four main timings as noted. I left the rest of the kit running at XMP. At that speed & timings, the results should have gotten close to mirroring the DDR3-2600 kit, and in some places it did, but for the most part the DDR3-2600 kit won out again. The only reasonable explanation is that the secondary and tertiary timing sacrifices necessary to run this kit at such high speed were too much to help performance.

You can peruse the benchmarks yourself and I won’t put too much text in between them. The takeaway is that this kit is out-performed by a cheaper TridentX DDR3-2600 kit.

Synthetic Testing

AIDA is going to show the largest difference between the competing kits; synthetic tests always do. Here you can see the DDR3-2933 results just get trounced across the board, especially in write & copy speeds. reducing the speed & tightening the timings did help a lot though.

AIDA64 Memory Tests
AIDA64 Memory Tests

Compression, Video Conversion and Rendering

Real world tests always show very little variation between RAM speeds. Where you’ll see the biggest difference between kits of memory are in synthetic testing and SuperPi benchmarking. Thus, there is a very small difference between these kits here. However, in four out of the six tests run, the DDR3-2600 kit comes out ahead. It’s only slightly ahead, but it was a consistent increase over the DDR3-2933 kit, with the exceptions of Cinebench R10 and PoV Ray 3.7.

7-Zip & x264 Benchmark
7-Zip & x264 Benchmark
Cinebench R10, Cinebench R11.5 and PoV Ray 3.7
Cinebench R10, Cinebench R11.5 and PoV Ray 3.7

Benchmarking

Last but not least, we’ll check out SuperPi and WPrime for the benchmarking crowd. With the exception of WPrime 1024M, which showed the DDR3-2933 kit just ediging out the DDR3-2600 kit, the latter kit wins the benchmarking brawl. The most important metric here by far is SuperPi 32M and the DDR3-2933 kit lost by nearly five seconds, which is big in the benchmarking realm.

SuperPi 1M & 32M and WPrime 32M & 1024M
SuperPi 1M & 32M and WPrime 32M & 1024M

Overclocking

So performance is not necessarily this kit’s bag. I emailed G.Skill with my results and basically gave them nearly the same conclusion I’ll be giving you here. They would agree that this kit’s purpose isn’t to necessarily perform better – it’s to have FUN with when overclocking memory.

The first thing I did was see if it could run DDR3-3000 without issue. Indeed it did, no problem. No effort, no voltage changes, just bumping up.

Running DDR3-3000
Running DDR3-3000

SuperPi 32M took a little more voltage to stabilize at DDR3-3000, but it did with 1.7 V applied to the RAM. Not too bad so far.

DDR3-3000 SuperPi 32M Stable
DDR3-3000 SuperPi 32M Stable

Then I started working the kit for what it’s made for – raw frequency. Before figuring out how to really clock RAM and with two sticks in, the kit seemed to stop at DDR3-3071 at 1.75 V.

DDR3-3071 Validated
DDR3-3071 Validated

So I went to work on actually clocking the RAM. First I pulled one of the sticks and went with a single stick in DIMM 1 on the board (the one closest to the CPU socket). Then I quit being a wuss and threw 1.85 V (in gradual increments) at it. That was how, with a little trial and error, I was able to clock this kit to a phenomenal DDR3-3330 with the CPU on water and the memory on air.

DDR3-3330 Validated
DDR3-3330 Validated

Let me say that again – this is air cooled memory reaching DDR3-3330. Wow. For those that like more proof, here’s the validation.

Final Thoughts & Conclusion

As usual, bleeding edge, high frequency memory isn’t cheap. Thankfully memory prices have dropped a little bit recently and the 8 GB G.Skill TridentX DDR3-2933 kit has come down to $369.99 shipped at Newegg. To state the obvious, that is a lot of money for a kit of memory. It’s not as much as some DDR3-3000 kits on the market – G.Skill’s is $799.99 and Corsair’s is $749.99 but out of stock.

Performance has been the elephant in the room in this review, so let’s drag that elephant right out front & center (as if you couldn’t see it before). This kit is out-performed by its little brother. The 8 GB G.Skill TridentX DDR3-2600 kit used for comparison here is $139.99 on Newegg. That’s 37.8% of the price of this DDR3-2933 kit. Not nearly 40% less than the price of the kit being reviewed, it’s under 40% of its price. Oh, and it performs better. So for anyone out there that wants memory currently on the market for performance, go for that kit. G.Skill will be happy; they’ll still be getting your money, just not as much of it.

That’s not the whole story though. For a subset of a subset of overclockers that really enjoy memory overclocking (of which yours truly is one), this kit is tailor made for you. If you find yourself in that subset that is willing to spend a good sum of money purely for the fun of overclocking your memory to DDR3-3000 and beyond – well beyond – this kit has your name written all over it. Believe me it is A. Lot. Of. Fun. Fun in spades. This is a memory geek’s dream at half the price of those DDR3-3000 kits.

For the rest of you, those that value performance over frequency numbers, have a look at the frequencies this kit can achieve. Then say “Ooohh” and “Aaaahhh”. Then go buy a cheaper kit.

Because this kit does what it says it will do and it can overclock to the moon – with regard to frequency only – as designed, I will not give it a “meh.” However, because it fails to do the one thing that higher-priced, higher-spec’ed memory should do – out-perform its cheaper-by-a-long-shot little brother – it doesn’t get to be Overclockers Approved either.

Sorry G.Skill – and all the other manufacturers putting out these crazy high frequency Hynix MFR kits like Corsair, Avexir, Adata, etc – you’ve got to bring the performance to go with the MHz. Without it, your kit is dead in the water aside from those that are either really into memory overclocking (see: subset of a subset) or those that are compensating for something else.

– Jeremy Vaughan (hokiealumnus)

About Jeremy Vaughan 197 Articles
I'm an editor and writer here at Overclockers.com as well as a moderator at our beloved forums. I've been around the overclocking community for several years and just love to sink my teeth into any hardware I can get my paws on!

Loading new replies...

d
djscrew

Member

439 messages 0 likes

woulda been nice to see an 1866 in there for comparison... afaik everything over 1866 is pretty much pointless

Reply Like

Avatar of Robert17
Robert17

Premium Member

3,698 messages 160 likes

Now that was interesting.....:nuts:

Reply Like

Avatar of Bobnova
Bobnova

Senior Member

20,964 messages 1 likes

What were the timings on the 2600 kit?

Reply Like

Avatar of hokiealumnus
hokiealumnus

Water Cooled Moderator

16,561 messages 25 likes

Per XMP. The primary four are 10-12-12-31.

Reply Like

Avatar of Bobnova
Bobnova

Senior Member

20,964 messages 1 likes

Ahh. That explains that.
Thanks!

Reply Like

Avatar of Culbrelai
Culbrelai

Member

1,804 messages 9 likes

woulda been nice to see an 1600 in there for comparison... afaik everything over 1600 is pretty much pointless

Fixed.

But yeah, why is high MHZ RAM like this so pointless?

What makes it that way, that increasing system memory clocks yields such low performance gains?

Reply Like

Avatar of Bobnova
Bobnova

Senior Member

20,964 messages 1 likes

It takes much more time to compute things than it takes to get the data to compute from RAM.
Hence, RAM is not the bottleneck.
Hence, Widening the RAM pathway doesn't do much.

Reply Like

Avatar of Culbrelai
Culbrelai

Member

1,804 messages 9 likes

It takes much more time to compute things than it takes to get the data to compute from RAM.
Hence, RAM is not the bottleneck.
Hence, Widening the RAM pathway doesn't do much.

So CPUs are the bottleneck, gotcha.

Why is memory tech so far ahead of everything else? Like those tiny 64GB micro SD cards... Stuff is amazing.

Reply Like

Avatar of Operant
Operant

Member

571 messages 0 likes

So CPUs are the bottleneck, gotcha.

Why is memory tech so far ahead of everything else? Like those tiny 64GB micro SD cards... Stuff is amazing.

It's a matter of complexity. Storing data on a chip is a much easier problem to solve as opposed to making a fully functioning processing unit

Reply Like

Avatar of Bobnova
Bobnova

Senior Member

20,964 messages 1 likes

It's a matter of complexity. Storing data on a chip is a much easier problem to solve as opposed to making a fully functioning processing unit

To an extent, the bigger the CPU cache the less memory speed matters.
We have quite large caches now, so memory doesn't matter much.
If you could disable the L3 cache suddenly memory would matter a lot more.
This could actually be tested to an extent, Athlon II quad core vs PhII quad core, especially an early AthII that was simply a PhII with disabled L3.
Sadly, I don't have one.

Reply Like