Is Intel Building the World's First 450mm/10nm Fab?

Intel is starting construction of  the world’s first 450mm manufacturing facility that could be ready for production in 2015. That’s a fact. ASML says they will have production-ready 10nm-capable Extreme UV equipment in 2015. That is also a fact. Is Intel building the first 450mm wafer capable and 10nm node fab at the same time?

Website Xbit Labs reports that construction of poetically named D1X Module 2 fab has begun this summer. Intel is going to throw some pocket money in it this year, at a height of $2 billion. The new module built in Hillsboro, Oregon, will have a floor area of roughly 1.1 million square feet (106 thousand square meters). It is about the same size as its twin, module 1, which is getting ready to start production of 14nm chips on 300mm wafers. The company claims the new module will be the world’s first facility capable of manufacturing semiconductors on 450mm wafers, departing from current 300mm wafers. 450mm wafers offer 225% the surface area of 300mm wafers used to fabricate almost all semiconductor chips on the market today. The size of the wafer is an undisputed advantage in the world of semiconductors manufacturing, substantially reducing per-chip costs.

Intel's Manufacturing Facilities in Hillsboro, Oregon - Image Courtesy Portland Business Journal

Intel’s Manufacturing Facilities in Hillsboro, Oregon (Courtesy Portland Business Journal)

At the same time as Intel’s announcement, ASML, the world’s largest supplier of photo-lithographic equipment, has said that it will have production-ready equipment for 10nm process by 2015. According to Ars Technica, The company is currently working on a prototype photo-lithographic machine using high-powered lasers to etch 10nm features on silicon wafers. The new technology relies on Extreme UV (EUV) light that has a wavelength of 13.5nm, moving from the current use of UV light of a wavelength of 193nm.  Producing EUV light is the main challenge in developing the new equipment. The company says its current NXE3100 prototype is able to produce about 55W of EUV light, but that commercial equipment will need to output at least 250W. The development of such hardware has been slow, a consequence of the challenge that is producing sufficient quantities of EUV light. At some point ASML expected to have 80W prototypes by the end of 2011. Intel has mentioned that it needs 1kW light sources for its production equipment.

ASML NXE3100 Extreme UV Photolithography Prototype - Image Courtesy ASML

ASML NXE3100 Extreme UV Photolithography Prototype (Courtesy ASML)

Intel is starting the construction of the building for its new fab this year, a process that could take up to two years. Following the latest announcement by ASML, we are left wondering what could happen if the company’s new EUV equipment was to be ready to outfit Intel’s new fab in the 2015 timeframe. Would Intel be owners of the world’s most advanced manufacturing facility, both on wafer size and process node?

Executing the world’s most advanced manufacturing process on a wafer 225% larger than any other fab is capable of would give Intel a definite advantage in the foundry business; decreasing per-chip costs by using larger wafers while increasing performance and lowering power needs of its chips by means of a super advanced 10nm process.

- dostov

Tags: , , ,

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>